Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.

نویسندگان

  • Yoshiya Ikawa
  • Kentaro Tsuda
  • Shigeyoshi Matsumura
  • Shota Atsumi
  • Tan Inoue
چکیده

A hypothetical evolutionary pathway from a ribozyme to a catalytic RNA-protein complex (RNP) is proposed and examined. In this hypothesis for an early phase of molecular evolution, one RNA-RNA interaction in the starting ribozyme is replaced with an RNA-protein interaction via two intermediary stages. At each stage, the original RNA-RNA interaction and a newly introduced RNA-protein interaction are designed to coexist. The catalytic RNPs corresponding to the intermediary stages were constructed by employing the Tetrahymena ribozyme together with molecular modeling. Analyses of the RNPs indicate that the protein can fully replace the original role of the RNA-RNA interaction in the starting ribozyme and that the association of a protein with a ribozyme might be beneficial for improving the ribozymatic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity

RNase P, the essential activity that performs the 5' maturation of tRNA precursors, can be achieved either by ribonucleoproteins containing a ribozyme present in the three domains of life or by protein-only enzymes called protein-only RNase P (PRORP) that occur in eukaryote nuclei and organelles. A fast growing list of studies has investigated three-dimensional structures and mode of action of ...

متن کامل

Design and development of a catalytic ribonucleoprotein.

Ribonucleoproteins (RNPs) consisting of derivatives of a ribozyme and an RNA-binding protein were designed and constructed based upon high-resolution structures of the corresponding prototype molecules, the Tetrahymena group I self-splicing intron RNA and two proteins (bacteriophage lambdaN and HIV Rev proteins) containing RNA-binding motifs. The splicing reaction proceeds efficiently only when...

متن کامل

Selections for constituting new RNA-protein interactions in catalytic RNP.

In vitro and in vivo selection techniques are developed to constitute new RNA-peptide interactions. The selection strategy is designed by employing a catalytic RNP consisting of a derivative of the Tetrahymena ribozyme and an artificial RNA-binding protein. An arginine-rich RNA-binding motif and its target RNA motif in the RNP are substituted with randomized sequences and used for the selection...

متن کامل

Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P

RNase P, a ribozyme-based ribonucleoprotein (RNP) complex that catalyzes tRNA 5'-maturation, is ubiquitous in all domains of life, but the evolution of its protein components (RNase P proteins, RPPs) is not well understood. Archaeal RPPs may provide clues on how the complex evolved from an ancient ribozyme to an RNP with multiple archaeal and eukaryotic (homologous) RPPs, which are unrelated to...

متن کامل

Next-generation sequencing reveals how RNA catalysts evolve from random space

Catalytic RNAs are attractive objects for studying molecular evolution. To understand how RNA libraries can evolve from randomness toward highly active catalysts, we analyze the original samples that led to the discovery of Diels-Alderase ribozymes by next-generation sequencing. Known structure-activity relationships are used to correlate abundance with catalytic performance. We find that effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2003